当前位置:首页  正高级

仲雷

办公电话:
.
邮箱:
zhonglei@ustc.tsg211.com
科研领域:
围绕陆气相互作用过程,重点关注陆气交界面上发生的能量和水分交换及其影响,科研兴趣包括但不局限于能量和水分循环、地气相互作用、大气边界层过程、卫星遥感应用等。 Research fields: My research interests mainly focus on energy and water cycle processes between land surface and atmosphere, maily including but not limited to energy and water cycle, land-atmosphere interaction, hydrometorology, atmospheric boundary layer process, application of remote sensing, etc.
 个人简介

仲雷,教授、博导、优青、中科大大气学科点点长。一直从事青藏高原地气相互作用、卫星遥感应用和大气边界层观测试验方面的研究工作,专注于利用野外观测、卫星遥感和数值模拟方法揭示青藏高原能量和水分循环过程及其影响。深度参与了中国科学院珠穆朗玛峰地区综合科学考察和第二次青藏高原综合科学考察等一系列大型野外考察试验。现任中国科学探险协会理事、那曲高寒气候环境西藏自治区野外科学观测研究站学术委员会委员、教育部学位中心专家库成员、安徽省领军人才。曾获安徽省自然科学优秀学术论文奖、中科大王宽诚育才奖、平凡基金—教育奖和西藏自治区科学技术奖一等奖等奖励。


Zhong Lei is now a professor at School of Earth and Space Sciences, University of Science and Technology of China. Since 2004, he has been engaged in the studies on the land- atmosphere interaction, the application of satellite remote sensing and field experiments of atmospheric boundary layer over the Tibetan Plateau. He has participated in a series of major field experiments, such as CAMP/Tibet and Comprehensive Scientific Expedition to Mt. Qomolangma Area of Chinese Academy of Sciences. He won the excellent youth fund of National Natural Science Foundation of China in 2015. He won the Wang Kuancheng Talent Cultivation Award of University of Science and Technology of China in 2017. He won the First Prize of Tibet Autonomous Region Science and Technology Award in 2022.


 课题&项目

1、主持项目:

国家自然科学基金优秀青年基金:地气相互作用与卫星遥感应用;

中国科学院战略性先导科技专项(A类)子子课题:西风—季风断面上地表参数的区域分布研究;

国家自然科学基金面上项目:基于多源卫星数据的青藏高原复杂地表蒸散发遥感估算与融合研究;

科技部第二次青藏高原综合科学考察研究子专题:西风—季风协同作用区地气水热交换关键参数卫星遥感估算研究;

国家自然科学基金面上项目:青藏高原全天空地表辐射收支与热状况的卫星遥感估算研究;

国家自然科学基金面上项目:青藏高原中部那曲河流域地气水分交换过程研究;

西藏气象局科技合作项目:西藏中部一江两河地区地表特征参数及蒸散量遥感估算。


2、参与项目:

国家自然科学基金重点项目:利用多源卫星资料对东亚季风区云和降水的研究;

国际合作项目:全球协调加强观测计划(CEOP)亚澳季风之青藏高原试验研究(CAMP/Tibet);

欧盟第七框架子专题:长期观测结合卫星遥感与数值模拟研究青藏高原水文气象过程及亚洲季风系统(CEOP-  AEGIS);

国家高技术研究发展计划(863计划)子专题:农田生态系统的水分胁迫与干旱遥感监测。

His grants mainly come from National NaturalScience Foundation of China, Ministry of Science and Technology of thePeople’s Republic of China and Chinese Academy of Sciences.



 学习经历

2004/09—2008/01,中国科学院青藏高原研究所,博士;

2001/09—2004/07,安徽师范大学,硕士;

1997/09—2001/07,安徽师范大学,本科。

Sep. 2004—Jan. 2008 Graduate study for doctor’s degree atInstitute of Tibetan Plateau Research, Chinese Academy of Sciences

Sep. 2001—Jul. 2004 Graduate study for master’s degreeat Anhui Normal University

Sep. 1997—Jul. 2001 Undergraduate study at AnhuiNormal University



 工作经历

2016/1—至今,图书馆VIP,地球和空间科学学院,教授;

2010/9—2015/12,图书馆VIP,地球和空间科学学院,副教授;

2008/4—2010/6,中国科学院青藏高原研究所,博士后;

2009/6—2009/12,荷兰Twente大学国际地理信息科学与地球观测学院(ITC);

2006/12—2007/9,荷兰Twente大学国际地理信息科学与地球观测学院(ITC)。


Jan. 2016present: Professor at School of Earth and Space Sciences, University of Science and Technology of China.

Sep.2010Dec. 2015: Associate professor at School of Earth and Space Sciences, University of Science and Technology of China.

Apr. 2008—Apr. 2010: Post-Doctoral Research Fellow at Institute of Tibetan  Plateau Research, Chinese Academy of Sciences.

Jun. 2009—Sep. 2009: University of Twente

Dec. 2006—Apr. 2007: University of Twente



 荣誉奖项

 1、2023年获平凡基金——教育奖

 2、2022年获西藏自治区科学技术奖一等奖

 3、2017年获图书馆VIP王宽诚育才奖

 4、2017年获图书馆VIP优秀班主任

 5、2015年获国家自然科学基金优秀青年科学基金资助

 6、2013年获安徽省自然科学优秀学术论文二等奖



 发表文章

1Li, P., L. Zhong *, Y. Ma, Y. Fu, M. Cheng, X. Wang, Y. Qi, & Z. Wang, (2023). Estimation of 1 km downwelling shortwave radiation over the Tibetan Plateau under all-sky conditions. Atmospheric Chemistry and Physics, 23, 9265–9285.

2Zou, M., L. Zhong *, Y. Ma, X. Wang, Y. Fu, & Z. Su, (2023). Retrieval of all-sky land surface temperature considering penetration effect using spaceborne thermal and microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing61, 4506712.

3Ma, H., L. Zhong *, Y. Fu, M. Cheng, X. Wang, M. Cheng, & Y. Chang, (2023). A study on hydrological responses of the Fuhe River Basin to combined effects of land use and climate change. Journal of Hydrology: Regional Studies, 48, 101476.

(4Cheng, M., L. Zhong *, Y. Ma, H. Ma, Y. Chang, P. Li, M. Cheng, X. Wang, & N. Ge, (2023). A study on the assessment and integration of multi-source evapotranspiration products over the Tibetan Plateau. Advances in Atmospheric Sciences, DOI: 10.1007/s00376-023-3036-3.

(5Qi, Y., L. Zhong *, Y. Ma, Y. Fu, X. Wang, & P. Li, (2023). Estimation of land surface temperature over the Tibetan Plateau based on Sentinel-3 SLSTR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 4180-4194.

(6Cheng, M., L. Zhong *, Y. Ma, X. Wang, P. Li, Z. Wang, & Y. Qi, (2023). A new drought monitoring index on the Tibetan Plateau based on multisource data and machine learning methods. Remote Sensing, 15(2), 512.

(7Wang, X., L. Zhong *, Y. Ma, Y. Fu, C. Han, P. Li, Z. Wang, & Y. Qi, (2023). Estimation of hourly actual evapotranspiration over the Tibetan Plateau from multi-source data. Atmospheric Research, 281: 106475.

(8王紫昕, 仲雷*, 马耀明, 傅云飞, (2023). 青藏高原典型下垫面通量印痕特征分析. 高原气象, 42(5): 1160-1171.

(9Ma, Y.*, T. Yao, L. Zhong *, B. Wang*, X. Xu, Z. Hu, W. Ma, F. Sun, C. Han, M. Li, X. Chen, J. Wang, Y. Li, L. Gu, Z. Xie, L. Liu, G. Sun, S. Wang, D. Zhou, H. Zuo, C. Xu, X. Liu, Y. Wang, & Z. Wang, (2023). Comprehensive study of energy and water exchange over the Tibetan Plateau: A review and perspective: From GAME/Tibet and CAMP/Tibet to TORP, TPEORP, and TPEITORP. Earth-Science Reviews, 237: 104312.

10Wang, X., L. Zhong *, & Y. Ma, (2022). Estimation of 30 m land surface temperatures over the entire Tibetan Plateau based on Landsat-7 ETM+ data and machine learning methods. International Journal of Digital Earth, 15(1): 1038-1055.

11王耀杰,仲雷*,陈明星,袁仁民,吴晓庆,邱学兴,葛楠,程美琳,栗培真, (2022). 基于 Landsat 8 OLI/TIRS的合肥市人为热通量遥感估算研究,地球科学进展 377:756-770.

12Wu, G., X. Zhou, X. Xu, J. Huang, A. Duan, S. Yang, W. Hu, Y. Ma, Y. Liu, J. Bian, Y. Fu, H. Yang, P. Zhao, L. Zhong, & W. Ma, (2022). An integrated research plan for the Tibetan Plateau land–air coupled system and its impacts on the global climate. Bulletin of the American Meteorological Society, DOI: 10.1175/BAMS-D-21-0293.1

13Ma, Y., B. Wang, X. Chen, L. Zhong, Z. Hu, W. Ma, C. Han, & M. Li, (2022). Strengthening the three-dimensional comprehensive observation system of multi-layer interaction on the Tibetan Plateau to cope with the warming and wetting trend. Atmospheric and Oceanic Science Letters, 15: 100224, DOI:10.1016/j.aosl.2022.100224.

14Sun, N., Y. Fu, L. Zhong, & R. Li (2022). Aerosol effects on the vertical structure of precipitation in East China. npj Climate and Atmospheric Science, 5(1): 60, DOI: 10.1038/s41612-022-00284-0.

15Sun, L., Y. Yang, Y. Fu, X. Zhang, L. Zhong, C. Zhao, & M. Ma, (2022). Summertime atmospheric water vapor transport between Tibetan Plateau and its surrounding regions during 1990–2019: Boundary discrepancy and interannual variation. Atmospheric Research, 275:106237, DOI: 10.1016/j.atmosres.2022.106237.

16Wang, M., Y. Fu, C. Zhao, L. Zhong, R. Li, D. Wang, X. Qiu, & S. Zhou, (2022). Characteristics of summer cloud precipitation along latitude 30°N in East Asia derived from TRMM PR and VIRS measurements. International Journal of Climatology, 42(10): 5373-5392.

17Li, G., H. Chen, M. Xu, C. Zhao, L. Zhong, R. Li, Y. Fu, & Y. Gao, (2022). Impacts of topographic complexity on modeling moisture transport and precipitation over the Tibetan Plateau in summer. Advances in Atmospheric Sciences, 39(7):1-16, DOI: 10.1007/s00376-022-1409-7.

18Zhao, Y., L. Zhong *, Y. Ma, Y. Fu, M. Chen, W. Ma, C. Zhao, Z. Huang, & K. Zhou,  (2021). WRF/UCM simulations of the impacts of urban expansion and future climate change on atmospheric thermal environment in a Chinese megacity.Climatic Change, 169(3-4), 38.

19Zhao, Y., L. Zhong *, R. Yuan, C. Zhao, R. Li, Y. Wang, Y. Lian, & M. Richardson, (2021). Simulation of Martian dust effects on polar CO2 ice caps and atmospheric circulation using the MarsWRF. Journal of Geophysical Research: Planets, 126(12):DOI:10.1029/2021JE006937.

20Huang, Z., L. Zhong *, Y. Ma, & Y. Fu, (2021). Development and evaluation of spectral nudging strategy for the simulation of summer precipitation over the Tibetan Plateau using WRF (v4.0). Geoscientific Model Development, 14: 2827-2841.

21Zhong, L.*, Z. Huang, Y. Ma, Y. Fu, M. Chen, M. Ma, & J. Zheng, (2021). Assessments of Weather Research and Forecasting land surface models in precipitation simulation over the Tibetan Plateau. Earth and Space Science, 8(3): DOI: 10.1029/2020EA001565.

22Ge, N., L. Zhong *, Y. Ma, Y. Fu, M. Zou, M. Cheng, X. Wang, & Z. Huang, (2021). Estimations of land surface characteristic parameters and turbulent heat fluxes over the Tibetan Plateau based on FY-4A/AGRI data. Advances in Atmospheric Sciences, 38(8), 1299-1314.DOI:10.1007/s00376-020-0169-5.

23Sun, N., L. Zhong, C. Zhao, M. Ma, & Y. Fu, (2021). Temperature, water vapor and tropopause characteristics over the Tibetan Plateau in summer based on the COSMIC, ERA-5 and IGRA datasets. Atmospheric Research, 266: 105955.

24Sun, N., Y. Fu, L. Zhong, C. Zhao, & R. Li, (2021). The impact of convective overshooting on the thermal structure over the Tibetan Plateau in summer based on TRMM, COSMIC, radiosonde, and reanalysis data. Journal of Climate, 34(19): 8047-8063.

25Su, Z., Y. Ma, X. Chen, X. Dong, J. Du, C. Han, Y. He, J. Hofste, M. Li, M. Li, S. Lv, W. Ma, M. Polo, J. Peng, H. Qian, J. Sobrino, R. Velde, J. Wen, B. Wang, X. Wang, L. Yu, P. Zhang, H. Zhao, H. Zheng, D. Zheng, L. Zhong, & Y. Zeng, (2021). Monitoring water and energy cycles at climate scale in the Third Pole Environment (CLIMATE-TPE). Remote Sensing, 13(18): DOI: 10.3390/rs13183661.

26 Han, C., Y. Ma, B. Wang, L. Zhong, W. Ma, X. Chen, & Z. Su, (2021). Long-term variations in actual evapotranspiration over the Tibetan Plateau. Earth System Science Data, 13(7): 3513–3524.

27马耀明,胡泽勇,王宾宾,马伟强,陈学龙,韩存博,李茂善,仲雷,谷良雷,孙方林,赖悦,刘莲,谢志鹏,韩熠哲,袁令,姚楠,石兴东,(2021). 青藏高原多圈层地气相互作用过程研究进展和回顾,高原气象,40(6): 1241-1262.

28Xu, K., L. Zhong *, Y. Ma, M. Zou, & Z. Huang, (2020). A study on the water vapor transport trend and water vapor source of the Tibetan Plateau. Theoretical and Applied Climatology, 140(3-4): 1031-1042.

29Ma, Y., Z. Hu, Z. Xie, W. Ma, B. Wang, X. Chen, M. Li, L. Zhong, F. Sun, L. Gu, C. Han, L. Zhang, X. Liu, Z. Ding, G. Sun, S. Wang, Y. Wang, & Z. Wang, (2020). A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau, Earth System Science Data, 12: 2937-2957

(30Fu, Y., Y. Ma, L. Zhong, Y. Yang, X. Guo, C. Wang, X. Xu, K. Yang, X. Xu, L. Liu, G. Fan, Y. Li, & D. Wang, (2020). Land surface processes and summer cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: a review and perspective, National Science Review7(3), 500-515.

31Zhang, M., C. Zhao, Z. Cong, Q. Du, M. Xu, Y. Chen, M. Chen, R. Li, Y. Fu, L. Zhong, S. Kang, D. Zhao, & Y. Yang, (2020). Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication, Atmospheric Chemistry and Physics, 20: 5923-5943.

32Fu, Y., Y. Chen, X. Zhang, Y. Wang, R. Li, Q. Liu, L. Zhong, Q. Zhang, & A. Zhang, (2020). Fundamental characteristics of tropical rain cell structures as measured by TRMM PR, Journal of Meteorological Research, 34(6):1129-1150.

33Zhong, L.*, M. Zou, Y. Ma, Z. Huang, K. Xu, X. Wang, N. Ge, & M. Cheng, (2019). Estimation of downwelling shortwave and longwave radiation in the Tibetan Plateau under all-sky conditions. Journal of Geophysical Research: Atmospheres, 124(21): 11086-11102.

34Zhong, L.*, Y. Ma, Z. Hu, Y. Fu, Y. Hu, X. Wang, M. Cheng, & N. Ge, (2019). Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar orbiting satellites. Atmospheric Chemistry and Physics. 19(8): 5529-5541.

35Zhong, L.*, Y. Ma, Y. Xue, & S. Piao. (2019). Climate change trends and impacts on vegetation greening over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres. 124(14): 7540-7552.

36Ge, N., L. Zhong*, Y. Ma, M. Cheng, X. Wang, M. Zou, & Z. Huang, (2019). Estimation of land surface heat fluxes based on Landsat 7 ETM+ data and field measurements over the northern Tibetan Plateau. Remote Sensing. 11(24), 2899.

37Cheng, M., L. Zhong*, Y. Ma, M. Zou, N. Ge, X. Wang, & Y. Hu. (2019). A study on the assessment of multis-source satellite soil moisture products and reanalysis data for the Tibetan Plateau. Remote Sensing. 11(10), 1196.

38 Wang, Y., R. Li, Q. Min, Y. Fu, Y. Wang, L. Zhong, & Y. Fu, (2019). A Three-source Satellite Algorithm for Retrieving All-sky Evapotranspiration Rate using Combined Optical and Microwave Vegetation Index at Twenty AsiaFlux Sites, Remote Sensing of Environment, 235, 111463, https://doi.org/10.1016/j.rse.2019.111463

39Wang, R., T. Xian, M. Wang, F. Chen, Y. Yang, X. Zhang, R. Li, L. Zhong, C. Zhao, & Y. Fu, (2019). Relationship between extreme precipitation and temperature in two different regions: the Tibetan Plateau and Middle-East China, Journal of Meteorological Research, 33(5), 870-884.

40Zou, M., L. Zhong *, Y. Ma, Y. Hu, Z. Huang, K. Xu, & L. Feng, (2018). Comparison of two satellite-based evapotranspiration models of the Nagqu River Basin of the Tibetan Plateau, Journal of Geophysical Research: Atmospheres, 123(8), 3961-3975.

41Zou, M., L. Zhong *, Y. Ma, & L. Feng, (2018). Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau, Theoretical and Applied Climatology, 132(3-4): 1039-1047.

42胡媛媛,仲雷*,马耀明,邹宓君,黄子煜,徐可飘,冯璐, (2018).青藏高原典型下垫面地表能量通量的模型估算与验证,高原气象,376:1499-1510.

43Fu, Y., X. Pan, T. Xian, G. Liu, L. Zhong, Q. Liu, R. Li, Y. Wang, & M. Ma, (2018). Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Climate Dynamics, 51, 1971-1989.

44Ma, Y., W. Ma, L. Zhong, Z. Hu, M. Li, Z. Zhu, C. Han, B. Wang, & X. Liu, (2017). Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia, Scientific Reports, 7: 44574, DOI:10.1038/srep44574.

45冯璐,仲雷*,马耀明,傅云飞,邹宓君,(2016)基于土壤温湿度观测资料估算藏北高原地区土壤热通量,高原气象,35: 297-308.

46Fu, Y., F. Chen, G. Liu, Y. Yang, R. Yuan, R. Li, Q. Liu, Y. Wang, L. Zhong, & L. Sun, (2016). Recent trends of summer convective and stratiform precipitation in Mid-Eastern China, Scientific Reports, 6: 33044.

47傅云飞,潘晓,刘国胜,李锐,仲雷(2016). 基于云亮温和降水回波顶高度分类的夏季青藏高原降水研究,大气科学,40(1):102-120.

48Zhong, L.*, Y. Ma, Y. Fu, X. Pan, W. Hu, Z. Su, M.S. Salama, & L. Feng, (2014). Assessment of soil water deficit for the middle reaches of Yarlung-Zangbo River from optical and passive microwave images, Remote Sensing of Environment, 142: DOI:10.1016/j.rse.2013.11.008.

49仲雷*, 马耀明, 秦军, 傅云飞, 冯璐, 潘晓, (2014). 利用天宫一号高光谱红外谱段估算青藏高原地表通量与蒸散量, 遥感学报, 18: 126-132.

50Ma, Y., Z. Zhu, L. Zhong, B. Wang, C. Han, Z. Wang, Y. Wang, L. Lu, P. Amatya, W. Ma, & Z. Hu, (2014). Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau, Atmospheric Chemistry and Physics, 14(3): 1507-1515.

(51 Ma, Y., C. Han, L. Zhong, B. Wang, Z. Zhu, Y. Wang, L. Zhang, C. Meng, C. Xu, & P. M. Amatya, (2014). Using MODIS and AVHRR data to determine regional surface heating field and heat flux distributions over the heterogeneous landscape of the Tibetan Plateau. Theoretical and applied climatology, 117, 643-652.

52Zhong, L. *, Y. Ma, W. Ma, Y. Fu, Z. Su, M.S. Salama, D. Chu, & C. Bianba, (2012). Remote sensing of land surface parameters in the middle reaches of Yarlung Zangbo River and its two tributaries from AVHRR and MODIS data, Journal of the Meteorological Society of Japan, 90(C): 75-86.

53Ma, Y., L. Zhong, Y. Wang, & Z. Su, (2012). Using NOAA/AVHRR data to determine regional net radiation and soil heat fluxes over the heterogeneous landscape of the Tibetan Plateau. International Journal of Remote Sensing, 33(15), 4784-4795.

54Ma, Y., B. Wang, L. Zhong, & W. Ma, (2012). The regional surface heating field over the heterogeneous landscape of the Tibetan Plateau using MODIS and in-situ data. Advances in Atmospheric Sciences, 29, 47-53.

55Salama, M. S., R. Van der Velde, L. Zhong, Y. Ma, M. Ofwono, & Z. Su. (2012). Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Climatic Change, 114(3-4), 769-781.

56Li, M., Y. Ma, & L. Zhong, (2012). The turbulence characteristics of the atmospheric surface layer on the north slope of Mt. Everest region in the spring of 2005. Journal of the Meteorological Society of Japan, 90(C): 185-193.

57Zhong, L.*, Z. Su, Y. Ma, M.S. Salama and J.A. Sobrino, (2011). Accelerated changes of environmental conditions on the Tibetan Plateau caused by climate change, Journal of Climate, 24(24): 6540-6550.

58仲雷*,马耀明,马伟强,除多,边巴次仁,(2011). 西藏中部一江两河地区地表通量的卫星遥感估算,冰川冻土,33(2)309-317.

59 Ma, Y., L. Zhong, B. Wang, W. Ma, X. Chen, & M. Li, (2011). Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in situ data. Atmospheric Chemistry and Physics, 11(20): 10461-10469.

60Ma, Y., Y. Wang, L. Zhong, R. Wu, S. Wang, & M. Li, (2011). The characteristics of atmospheric turbulence and radiation energy transfer and the structure of atmospheric boundary layer over the northern slope area of Himalaya. Journal of the Meteorological Society of Japan, 89A: 345-353.

(61Zhong, L.*, Y. Ma, M.S. Salama, & Z. Su, (2010). Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau, Climatic Change, 103: 519-535.

62Zhong, L.*, Y. Ma, Z. Su, & M.S. Salama, (2010). Estimation of land surface temperature over the Tibetan Plateau using AVHRR and MODIS data, Advances in Atmospheric Sciences, 27(5): 1110-1118.

63Zhong, L.*, Y. Ma, Z. Su, W. Ma, & Y. Lv, (2009). Land-atmosphere energy transfer and surface boundary layer characteristics in the Rongbu valley on the northern slope of Mt. Everest, Arctic, Antarctic, and Alpine Research, 41(3): 396-405.

64Ma, Y., W. Ma, Y. Wang, L. Zhong, M. Li, & H. Ishikawa, (2009). Study of the energy and water cycle over the heterogeneous landscape of the northern Tibetan Plateau. Hydrological Modelling and Integrated Water Resources Management in Ungauged Mountainous Watersheds, Chengdu, China, IAHS, 335: 168-176.

65Ma, Y., Y. Wang, R. Wu, Z. Hu, K. Yang, M. Li, W. Ma, L. Zhong, F. Sun, X. Chen, Z. Zhu, S. Wang, & H. Ishikawa, (2009). Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau. Hydrology and Earth System Sciences, 13(7), 1103-1111.

66Ma, W., Y. Ma, M. Li, Z. Hu, L. Zhong, Z. Su, H. Ishikawa, & J. Wang, (2009). Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery. Hydrology and Earth System Sciences, 13(1), 57-67.

67马伟强,马耀明,Tsuneo Matsunaga,胡泽勇,仲雷,李茂善,赵逸舟,王永杰,王介民,(2008). 利用ASTER数据估算20024月阿克苏地表特征和植被参数,高原气象,27 (3)544-550.

68仲雷*,马耀明,李茂善,(2007). 珠穆朗玛峰绒布河谷近地层大气湍流及能量输送特征分析,大气科学,31 (1)48-56.

69仲雷*,马耀明,苏中波,王永杰,吕雅琼,朱志鵾,(2007). 雨季前后珠峰地区近地层气象要素、辐射及能量平衡分量变化特征,高原气象,26 (6): 1269-1275.

70马耀明,王永杰,马伟强,仲雷,苏中波,(2007). 珠峰复杂地表区域能量通量的卫星遥感,高原气象,26 (6): 1231-1236.

71马伟强,戴有学,马耀明,孙方林,李茂善,仲雷,王介民,(2007). 珠峰地区大气边界层结构及近地层能量交换分析,高原气象,26 (6)1237-1243.

72朱志鹍,马耀明,李茂善,仲雷(2007). 珠穆朗玛峰北坡高寒草甸生态系统CO2通量日变化与月变化特征,高原气象,26 (6)1300-1304.

73马耀明,仲雷,田辉,孙方林,苏中波,Massimo Menenti, (2006). 青藏高原非均匀地表区域能量通量研究,遥感学报,10 (4)542-547.

74Ma, Y., L. Zhong, Z. Su, H. Ishikawa, M. Menenti, & T. Koike, (2006). Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 Enhanced Thematic Mapper data over the central Tibetan Plateau area, Journal of Geophysical Research, 111 (D10305): DOI.1029/2005JD006742.

75李茂善,马耀明,仲雷,吕世华,(2006). 珠峰和曲宗站200545月近地辐射能收支初步分析,高原气象,25 (6)1008-1013.

76李茂善,戴有学,马耀明,仲雷,吕世华,(2006). 珠峰地区大气边界层结构及近地层能量交换分析,高原气象,25 (5)807-813.